

A novel class of Ribosome Modulating Agents (RMAs) targets ribosome heterogeneity in a subset of Small Cell Lung Cancers

V. Badarinarayana¹, M. Brait², E. Terzo¹, D.G. Lima², M.T. Ugurlu², S. Apte¹, S. Padhye¹, S. Rashed¹, W.F. Austin³, C. Wang³, M. Caponegro⁴, R.B. Clark³, D. Sidransky², V. Modur¹

¹Eloxx Pharmaceuticals, Biology, Watertown, USA, ²Eloxx Pharmaceuticals, Chemistry, Watertown, USA, ³Vindhya DataScience, Data Science, Morrisville, USA. ⁴Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, USA

Introduction

Small cell lung cancer (SCLC) has a very poor prognosis and limited treatment options. Genomic studies in SCLC show that MYC isoforms are key oncogenic drivers in most of SCLC tumors. As a result, these tumors tend to have high proliferation and protein translation rates. We synthesized ribosome modulating agents (RMAs), a novel class of macrolides, capable of selectively inhibiting translation of a subset of molecules enriched for ribogenesis and translation-related proteins in sensitive SCLC cell lines. ZKN-217 selectively inhibits growth and induces apoptosis in a subset of SCLC cell lines characterized by high MYC activity and high ribogenesis rates. Furthermore, ZKN-217 is synergistic with current SCLC standard of care DNA intercalating drugs. The dependency of MYC-driven cancers on abnormally high protein translation rates can therefore be exploited by our RMAs presenting a novel therapeutic opportunity for this recalcitrant disease with high unmet needs.

Novel synthetic macrolide-based allosteric modulators of the human ribosome

Several clinical subtypes in solid and hematological cancers are highly sensitive to ZKN-217

